274 research outputs found

    Semi-allogeneic vaccine for T-cell lymphoma

    Get PDF
    © 2007 Yu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Semi-allogeneic vaccines and tumor-induced immune tolerance

    Get PDF
    Experimental results from studies with inbred mice and their syngeneic tumors indicated that the inoculation of semi-allogeneic cell hybrids (derived from the fusion between syngeneic tumor cells and an allogeneic cell line) protects the animal host from a subsequent lethal challenge with unmodified syngeneic tumor cells. Semi-allogeneic somatic cell hybrids were generated by the fusion of EL-4 T lymphoma cells (H-2b) and BALB/c-derived renal adenocarcinoma RAG cells (H-2d). Cell hybrids were injected intra-peritoneally (i.p.) in C57BL/6 mice (H-2b) before challenging the mice with a tumorigenic dose of EL-4 cells. Semi-allogeneic tumor cell hybrids could not form a tumor in the animal host because they expressed allogeneic determinants (H-2d) and were rejected as a transplant. However, they conferred protection against a tumorigenic challenge of EL-4 cells compared to control mice that were mock-vaccinated with i.p.-injected phosphate-buffered saline (PBS) and in which EL-4 lymphomas grew rapidly to a large size in the peritoneal cavity. Screening of spleen-derived RNA by means of focused microarray technology showed up-regulation of genes involved in the Th-1-type immune response and in the activation of dendritic antigen-presenting cells (APC). The results of our studies confirm the role of APC in mediating the immune protection induced by semi-allogeneic vaccines by activating a Th-1 response; these studies also reveal that semi-allogeneic vaccines are able to interfere with or even block the tumor-mediated induction of immune tolerance, a key mechanism underlying the suppression of anti-tumor immunity in the immune competent host

    Nervous system characterization during the development of a basal echinoderm, the feather star Antedon mediterranea

    Get PDF
    Neural development of echinoderms has always been difficult to interpret, as larval neurons degenerate at metamorphosis and a tripartite nervous system differentiates in the adult. Despite their key phylogenetic position as basal echinoderms, crinoids have been scarcely studied in developmental research. However, since they are the only extant echinoderms retaining the ancestral body plan of the group, crinoids are extremely valuable models to clarify neural evolution in deuterostomes. Antedon mediterranea is a feather star, endemic to the Mediterranean Sea. Its development includes a swimming lecithotrophic larva, the doliolaria, with basiepithelial nerve plexus, and a sessile filter-feeding juvenile, the pentacrinoid, whose nervous system has never been described in detail. Thus, we characterized the nervous system of both these developmental stages by means of immunohistochemistry and, for the first time, in situ hybridization techniques. The results confirmed previous descriptions of doliolaria morphology and revealed that the larval apical organ contains two bilateral clusters of serotonergic cells while GABAergic neurons are localized under the adhesive pit. This suggested that different larval activities (e.g., attachment and metamorphosis) are under the control of different neural populations. In pentacrinoids, the analysis showed the presence of a cholinergic entoneural system while the ectoneural plexus appeared more composite, displaying different neural populations. The expression of three neural-related microRNAs was described for the first time, suggesting that these are evolutionarily conserved also in basal echinoderms. Overall, our results set the stage for future investigations that will reveal new information on echinoderm evo-devo neurobiology

    Polystyrene microplastics ingestion induced behavioral effects to the cladoceran Daphnia magna

    Get PDF
    Microplastic (\u3bcPs) contamination represents a dramatic environmental problem threatening both aquatic and terrestrial organisms. Although several studies have highlighted the presence of \u3bcPs in aquatic environments, the information regarding their toxicity towards organisms is still scant. Moreover, most of the ecotoxicological studies of \u3bcPs have focused on marine organisms, largely neglecting the effects on freshwater species. The present study aimed at exploring the effects caused by 21-days exposure to three concentrations (0.125, 1.25 and 12.5 \u3bcg/mL) of two differently sized polystyrene microplastics (P\u3bcPs; 1 and 10 \u3bcm) to the Cladoceran Daphnia magna. The ingestion/egestion capability of daphnids (<24 h) and adults, the changes in individual growth and behavior, in terms of changes in swimming activity, phototactic behavior and reproduction, were investigated. Both particles filled the digestive tract of daphnids and adults within 24 h of exposure at all the tested concentrations. Ingested P\u3bcPs remained in the digestive tract even after 96 h in a clean medium. For both particles, an overall increase in body size of adults was noted at the end of the exposure to the highest tested concentrations, accompanied by a significant increase in swimming activity, in terms of distance moved and swimming velocity, and by an alteration of the phototactic behavior. A significant increase in the mean number of offspring after the exposure to the highest P\u3bcPs concentrations of different size was recorded. Polystyrene \u3bcPs can affect behavioral traits of D. magna leading to potentially harmful consequences on population dynamics of this zooplanktonic species

    Combining polynomial chaos expansions and genetic algorithm for the coupling of electrophysiological models

    Get PDF
    The number of computational models in cardiac research has grown over the last decades. Every year new models with di erent assumptions appear in the literature dealing with di erences in interspecies cardiac properties. Generally, these new models update the physiological knowledge using new equations which reect better the molecular basis of process. New equations require the fi tting of parameters to previously known experimental data or even, in some cases, simulated data. This work studies and proposes a new method of parameter adjustment based on Polynomial Chaos and Genetic Algorithm to nd the best values for the parameters upon changes in the formulation of ionic channels. It minimizes the search space and the computational cost combining it with a Sensitivity Analysis. We use the analysis of di ferent models of L-type calcium channels to see that by reducing the number of parameters, the quality of the Genetic Algorithm dramatically improves. In addition, we test whether the use of the Polynomial Chaos Expansions improves the process of the Genetic Algorithm search. We conclude that it reduces the Genetic Algorithm execution in an order of 103 times in the case studied here, maintaining the quality of the results. We conclude that polynomial chaos expansions can improve and reduce the cost of parameter adjustment in the development of new models.Peer ReviewedPostprint (author's final draft

    Evaluation of the mechanism of action of Bacillus spp. to manage Meloidogyne incognita with split root assay, RT-qPCR and qPCR

    Get PDF
    The goal of this research is to determine the mechanism of action of two Bacillus spp. that can manage Meloidogyne incognita population density in cotton. The overall objectives are 1) determine the efficacy and direct antagonistic capabilities of the Bacillus spp. and 2) determine the systemic capabilities of the Bacillus spp. The greenhouse in planta assay indicated B. amyloliquefaciens QST713 and B. firmus I-1582 could manage M. incognita similarly to the chemical standard fluopyram. An in vitro assay determined that B. firmus I-1582 and its extracted metabolites were able to directly manage M. incognita second stage juveniles by increasing mortality rate above 75%. A split root assay, used to determine systemic capabilities of the bacteria, indicated B. amyloliquefaciens QST713 and B. firmus I-1582 could indirectly decrease the nematode population density. Another species, B. mojavensis strain 2, also demonstrated systemic capabilities but was not a successful biological control agent because it supported a high population density in greenhouse in planta assay and in the split root assay. A RT-qPCR assay was used to confirm any systemic activity observed in the split root assay. At 24 hours both B. amyloliquefaciens QST713 and B. firmus I-1582 upregulated one gene involved in the initial stages of JA synthesis pathway but not another gene involved in the later stages of JA synthesis. These results point to a JA intermediate molecule, most likely OPDA, stimulated by the bacteria rather than JA in a short-term systemic response. After 1 week, the Bacillus spp. stimulated a SA-responsive defense related gene. The long-term systemic response to the Bacillus spp. indicates salicylic acid also plays a role in defense conferred by these bacteria. The final assay was a qPCR to determine the concentration of the bacteria on the cotton roots after 24 days. Bacillus amyloliquefaciens QST713 and B. firmus I-43 1582 were able to colonize the root successfully, with the concentration after 24 days not significantly differing from the concentration at inoculation. This study identifies two bacteria that work via systemic resistance and will help aid in implementing these species in an integrated management system

    \u3ci\u3ePlectus\u3c/i\u3e of the Prairie: A Case Study of Taxonomic Resolution from a Nematode Biodiversity Survey

    Get PDF
    Taxonomic resolution is a critical component of biodiversity assessments. In this case study, we examined a single taxon within a larger study of nematode diversity to evaluate the taxonomic resolution of different diversity assessment methods. The selected taxon was the microbial-feeding genus Plectus, a group considered to include multiple cosmopolitan species. The methods included a morphological evaluation by light microscopy, Sanger sequencing of PCR amplicons of COI and 18S gene regions, and 18S metabarcoding sequencing. The study sites were 15 remnant tallgrass prairie plots in eastern Nebraska. In the morphological analysis, we observed two basic morphotypes, a short-tailed form with a small amphid and a long-tailed form with a large amphid. Sanger sequencing of COI sorted Plectus diversity into six distinct clades. The largest two of these six clades keyed to P. parietinus and P. rhizophilus based on morphology. BLAST analysis with COI revealed no close matches in GenBank. Sanger sequencing of the 18S region did not differentiate the six clades. These results illustrate that the method of diversity assessment strongly influences estimates of biodiversity. An additional 95 Plectus specimens, from outside the remnant sites, added taxonomic breadth to the COI phylogenetic tree. There were no geographically widespread COI haplotypes and no evidence of cosmopolitan Plectus species

    The Innate Immune System of the Perinatal Lung and Responses to Respiratory Syncytial Virus Infection

    Get PDF
    The response of the preterm and newborn lung to airborne pathogens, particles, and other insults is initially dependent on innate immune responses since adaptive responses may not fully mature and require weeks for sufficient responses to antigenic stimuli. Foreign material and microbial agents trigger soluble, cell surface, and cytoplasmic receptors that activate signaling cascades that invoke release of surfactant proteins, defensins, interferons, lactoferrin, oxidative products, and other innate immune substances that have antimicrobial activity, which can also influence adaptive responses. For viral infections such as respiratory syncytial virus (RSV), the pulmonary innate immune responses has an essential role in defense as there are no fully effective vaccines or therapies for RSV infections of humans and reinfections are common. Understanding the innate immune response by the preterm and newborn lung may lead to preventive strategies and more effective therapeutic regimens

    Anxiety and Expressed Emotion in a Sample of Obese Patients

    Get PDF
    INTRODUCTION Expressed Emotion (EE) is a measure of the intensity of the affective family climate and plays a role in disease course and outcome. Especially in urban settings, obesity is a severe problem with serious implications as far as health risks are concerned. Having a high EE caregiver has been suggested to correlate with a worse treatment compliance in obese patients. OBJECTIVES To measure level of EE, stressful events and anxiety in obese patients and their caregivers; to investigate the possible correlations between compliance with treatment and emotional temperature of families. METHODS We have already recruited more than 150 obese patients and their caregivers. Assessment included: Level of Expressed Emotion Scale (LEE), one version for patients and one for relatives in order to evaluate 4 dimensions: intrusiveness, emotional response, attitude toward disease, tolerance and expectation; the Paykel\u2019s Interview for Recent Life Events; STAI Y1 concerning state anxiety and STAI Y2 concerning trait anxiety. Furthermore we collected demographic characteristics and BMI (Body Mass Index). RESULTS Data collection and analyses are still ongoing. Preliminary results suggest a correlation between obesity and level of anxiety. We expect to find a correlation between level of EE and variation of BMI. CONCLUSIONS Levels of EE and anxiety should be considered when planning treatment interventions to enhance compliance in obese patients and to support change in their life-style
    • …
    corecore